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Abstract 

Background:  Elucidating cellular metabolism led to many breakthroughs in biotech-
nology, synthetic biology, and health sciences. To date, deriving metabolic fluxes by 
13C tracer experiments is the most prominent approach for studying metabolic fluxes 
quantitatively, often with high accuracy and precision. However, the technique has a 
high demand for experimental resources. Alternatively, flux balance analysis (FBA) has 
been employed to estimate metabolic fluxes without labeling experiments. It is less 
informative but can benefit from the low costs and low experimental efforts and gain 
flux estimates in experimentally difficult conditions. Methods to integrate relevant 
experimental data have been emerged to improve FBA flux estimations. Data from 
transcription profiling is often selected since it is easy to generate at the genome scale, 
typically embedded by a  discretization of differential and non-differential expressed 
genes coding for the respective enzymes.

Result:  We established the novel method Linear Programming based Gene Expression 
Model (LPM-GEM). LPM-GEM linearly embeds gene expression into FBA constraints. We 
implemented three strategies to reduce thermodynamically infeasible loops, which is 
a necessary prerequisite for such an omics-based model building. As a case study, we 
built a model of B. subtilis grown in eight different carbon sources. We obtained good 
flux predictions based on the respective transcription profiles when validating with 
13C tracer based metabolic flux data of the same conditions. We could well predict the 
specific carbon sources. When testing the model on another, unseen dataset that was 
not used during training, good prediction performance was also observed. Further-
more, LPM-GEM outperformed a well-established model building methods.

Conclusion:  Employing LPM-GEM integrates gene expression data efficiently. The 
method supports gene expression-based FBA models and can be applied as an alter-
native to estimate metabolic fluxes when tracer experiments are inappropriate.

Keywords:  Flux balance analysis, Mixed-integer linear programming, Bacillus subtilis, 
Carbon source, Transcriptomics, Constraint-based modeling, Thermodynamically 
infeasible loops
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Background
Gaining insight into the metabolic fluxes can lead to a better understanding of how cells 
maintain their metabolic state and how they metabolically adapt to their microenviron-
ment. It has led to astonishing discoveries such as considerably increased production 
yields after metabolic engineering [1–4], improved strain performance [5–7], and under-
standing various patho-mechanisms and identifying drug targets to cancer or diabetes 
[8–12]. In order to determine fluxes in metabolic pathways, metabolites are labeled with 
the specific 13C isotope and are traced over time employing mass spectrometry [1, 4, 6, 
7, 9, 13–15], providing high accuracy and precision [16, 17]. However, these experiments 
are labor-intensive and costly [16, 18–20]. Besides this, constraint-based modeling 
(CBM) [21] has been applied to predict metabolic fluxes basing on flux balance analy-
sis (FBA) [22]. FBA can be used to estimate metabolic fluxes without conducting such 
labeling experiments. Together with biologically reasonable assumptions as, e.g., bacte-
ria or cancer cells aiming to maximize biomass production, fluxes of the metabolic reac-
tions are derived from physiochemical constraints of their stoichiometry. FBA assumes 
a mass balance at a steady state for each (inner) metabolite. Additional constraints may 
be derived from thermodynamic constraints implying the directionality and enzyme 
capacity estimating a maximal enzymatic rate (Vmax). By this, FBA bypasses the need for 
reaction kinetic parameters facilitating to construct metabolic models on a genome scale 
without determining these experimentally demanding parameters [21–25]. It allows get-
ting an estimate of the metabolic flux of interest leading to potential new hypotheses 
enabling the design of adapted experiments [2, 3, 10, 12, 26]. However, typically, utilizing 
only the stoichiometry of the reactions is insufficient to achieve good flux predictions. 
Hence, techniques were developed to add experimental data during model building [23, 
27–33]. One of the most effective approaches was to integrate experimental omics data 
and specifically transcription profiles as they are not labor-intensive to generate on a 
systems view [34–36]. Though the data is not as direct as 13C tracer based data, it led to 
considerably good flux predictions [27, 28, 31–33]. Various methods have been devel-
oped to use gene expression data for metabolic network models. Most prominently, 
the approaches define qualitatively discretized   expressed/non-expressed reactions 
by setting a threshold as, e.g., implemented in the integrative Metabolic Analysis Tool 
(iMAT) [31, 33], the software Gene Inactivity Moderated by Metabolism and Expression 
(GIMME) [27], Probabilistic Regulation of Metabolism (PROM) [28] or the metabolic 
Context-specificity Assessed by Deterministic Reaction Evaluation (mCADRE) [32]). 
Although these context-specific model extraction methods successfully improved flux 
predictions compared to FBA not basing on expression data, finding suitable thresholds 
can be challenging. Moreover, employing defined thresholds disregard the fine-grained 
regulation of metabolism. To overcome this and provide better flux predictions, we 
propose a novel constraint-based approach considering the continuous nature of gene 
expression by embedding it in a linear model  and applying three strategies to reduce 
thermodynamically infeasible loops.

Nutrition is essential for any cell to provide building blocks for maintenance and prolif-
eration and to generate energy. Being able to identify carbon sources can support finding 
targets to treat microbial pathogens causing infectious diseases. Specifically, pathogenic 
micro-organisms are challenging to treat when hiding inside host cells. For example, 
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osteomyelitis is an infection in the bone marrow and is mainly caused by Staphylococ-
cus aureus  [37–39]. It is a complex situation for treatment since antibiotics must pen-
etrate the host cell or biofilm to eradicate the bacteria. For such a condition, 13C tracing 
experiments are difficult [19] as the observed tracing components may not be adequately 
traced back to the production/consumption of the host cell or the pathogen, and FBA 
may be a good alternative. We developed our method to predict nutritional uptakes, 
which may, in a future study, be applied to such a rather complex cellular situation in 
which a simple tracer analysis is difficult to perform. As a case study, we demonstrated 
our modeling concept and predicted the nutrition of the well-studied bacterium Bacillus 
subtilis (B. subtilis) using publicly available gene expression data studied at different car-
bon source conditions [13, 40].

Methods
Data assembly

Experimental data of the eight‑carbon‑source study (first dataset)

Published microarray gene expression data of the B. subtilis strain BSB1 was used. BSB1 
is a tryptophan prototrophic derivative of strain 168. The data was taken from the origi-
nal publication (Table S2 from [40]). The data based on tilling arrays covering the whole 
genome of B. subtilis 168 [40]. B. subtilis was grown in minimal medium in eight dif-
ferent carbon source conditions (glucose, fructose, gluconate, glutamate/succinate, glyc-
erol, malate, malate/glucose, pyruvate) [40]. To validate our model, we used metabolic 
flux data from 13C isotope labeling experiments of the same eight carbon source condi-
tions (Table S4 from [14]). In the following, this data will be denoted as the first dataset.

Experimental data of the nutritional‑shift study (second dataset)

To validate our model with a separate, unknown dataset, we used publicly available gene 
expression and 13C  tracer based metabolic flux data from a time-series experiment of 
two nutritional shifts, i.e., the shift from glucose to glucose plus malate and the shift 
from malate to malate plus glucose [13]. Gene expression and 13C metabolic flux data 
were generated using the same experimental protocol as for the first dataset. B. subti-
lis was grown in minimal medium on a single carbon substrate until an OD600 of 0.5 
was achieved. Then, the other substrate (glucose or malate) was added to the culture to 
assess the bacterial behavior at 0 (before the addition of the other substrate), 5, 10, 15, 
25, 45, 60, and 90 minutes after the other substrate was added. Both gene expression and 
13C metabolic flux data were taken from the BaSysBio database (https://​basys​bio.​ethz.​
ch/​openb​is/​basys​bio_​openb​is.​html). This data is denoted as the second dataset in the 
following.

Data pre‑processing

We used the gene expression data of the first and second datasets. It had been pre-
processed by computing the median of the estimated transcription signal of all probes 
assigned to one corresponding gene [13, 40]. The gene expression data in the second 
dataset had been further processed by quantile normalization [13]. All gene expression 
levels were provided after log2 transformation [13, 40]. In order to obtain the gene sym-
bols, BSU identifiers were matched with gene symbols using bioDBnet, version 2.1 [41]. 

https://basysbio.ethz.ch/openbis/basysbio_openbis.html
https://basysbio.ethz.ch/openbis/basysbio_openbis.html
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In the first dataset, each condition contained three biological replicates, and we used all 
of them. For most of the time points of the second dataset, three biological replicates 
were available. The rest had two biological replicates. For each condition/time point, 
gene expression levels across the available replicates were averaged. To map gene expres-
sion values to proteins and reactions, we used the gene-protein-reaction (GPR) map-
ping from the original publication of Chubukov et  al. [14] and the metabolic network 
of B. subtilis 168 available from the BiGG Models database [42] (BiGG ID iYO844) [43]. 
We compared the mappings with the information from UniProt [44] and KEGG [45–47] 
and corrected it if stated otherwise in these databases. Additionally, we found literature 
about two more genes (lrgA, lrgB) coding for a pyruvate transporter and added them 
to the corresponding reaction in the GPR mapping [48]. The GPR mapping we used is 
provided in Additional file 1: Table S1. 13C metabolic flux data from Chubukov et al. [14] 
and Buescher et al. [13] were used as published without further processing.

Model building

Building the metabolic model

To develop a mixed-integer linear programming based model, we transferred the iYO844 
model of B. subtilis from Matlab to R (stoichiometric matrix, lower and upper bounds, 
reversibility, metabolite, and reaction names). To efficiently compare prediction results 
from our approach with the 13C metabolic flux data, we determined if we could fit the 
13C metabolic flux data to the metabolic model in R. The solution from the 13C model 
needed to be a feasible solution complying with all set constraints. However, initial tri-
als showed that we could not find any solution in the solution space when we tried to fit 
flux values from the 13C metabolic flux data allowing only one exchange reaction flux to 
be non-zero, i.e., from the specific transporter of the corresponding carbon source. In 
turn, it was possible to find a feasible solution when we also allowed fluxes from other 
exchange reactions besides the exchange reaction of the corresponding carbon source to 
enter the system. Although the solution was found, the flux values from other exchange 
reactions were substantially high, which was unrealistic. Hence, we set up an optimi-
zation problem to find a reasonable boundary for each of these exchange reactions by 
letting the solution deviate from 13C metabolic flux data by maximal 0.1. After optimiza-
tion, we obtained a sum of fluxes from other exchange reactions for each different con-
dition. We then compared these values and applied the lowest possible value (sum of 
fluxes = 0.688) restricting the influx of all other metabolites (being not the metabolite of 
the corresponding condition) into the cell. The list of all exchange reactions besides the 
designated carbon sources of the corresponding minimal medium is provided in Addi-
tional file  1: Table  S2. For a fair comparison between LPM-GEM and the benchmark 
methods (parsimonious enzyme usage Flux Balance Analysis (pFBA) [49], the integrative 
Metabolic Analysis Tool (iMAT) [31, 33], and metabolic Context-specificity Assessed by 
Deterministic Reaction Evaluation (mCADRE) [23]), the bound of these exchange reac-
tions was consistently opened across all methods providing the best possible solution 
space to achieve correct flux predictions. Restricting fluxes of these exchange reactions 
was adjusted according to the flexibility of each method. While it was possible to limit 
the bound of these exchange reactions in pFBA, we received infeasible solutions for 
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iMAT and mCADRE. Thus, we allowed no restriction for these two methods as it was 
found to be necessary for their implementation.

Defining the set of reactions for the optimization criterion

As described below, we benchmarked our models with a well-defined gold standard, 
i.e., flux values based on the 13C labeling data from the original publication. This gold 
standard data was available for 40 reactions, mostly covering central energy metabo-
lism [14]. Hence, these reactions were used for the optimization of our metabolic model 
explained in the next section. These reactions are called core reactions in the follow-
ing. To improve the model predictions, we added a selection of further reactions to the 
optimization function of our model, called associated reactions in the following. We 
added associated reactions following three criteria, (1) they needed to be reactions that 
were directly connected (via an exchanging metabolite) to the core reactions in central 
energy metabolism or amino acid biosynthesis, (2) important metabolites in glycolysis 
or tricarboxylic acid (TCA) cycle (e.g., glyceraldehyde 3-phosphate, pyruvate, oxaloac-
etate, α-ketoglutarate) are substrates or products of these reactions, and (3) at least one 
of the associated genes to the reactions needed to be differentially expressed in at least 
one out of the eight carbon sources of the first dataset when compared to the expres-
sion of B. subtilis in the control medium (B. subtilis grown in LB medium) [13]. For this, 
T-tests were performed comparing the expression value of the corresponding gene in 
each specific carbon source condition versus its expression in the control medium. The 
Benjamini-Hochberg method was used to correct for multiple testing across all genes 
[50]. The p-value cutoff was 0.05. By this, we assembled 119 genes and 138 reactions in 
total (Additional file 1: Table S1).

Formulating the optimization criterion

We assumed that the metabolic flux correlates linearly with the expression value of 
the gene coding for the responsible enzyme of the corresponding reaction (Additional 
file 1: Figure S1). We also tested more complex transformations but found no improve-
ment/reduction of the residuals of the regression models of the according transformed 
expression data with the 13C flux data (Additional file 1: Figure S2). We linearly mapped 
gene expression values to predicted fluxes formulated within the following optimization 
problem.

Let vfitri,c represent a gene expression-based flux for reaction ri ( ri is a reaction that is 
part of the core or associated reactions) in condition c . vfitri,c is based on information from 
gene expression data and the flux range,

where gri,c is the averaged gene expression value of the gene associated with reaction 
ri in condition c . gmin

ri  is the minimum gene expression value across all conditions of the 
gene associated with reaction ri , gmax

ri  is the maximum gene expression value. Vmin
ri  is 

the minimum possible flux and Vmax
ri  is the maximum possible flux across all conditions 

(1)v
fit
ri,c = Vmin

ri +

(

gri,c − gmin
ri

)

[

(

Vmax
ri − Vmin

ri

)

(

gmax
ri − gmin

ri

)

]
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obtained from flux variability analysis (FVA, see below) for core reactions (CR) and 
associated reactions (AR).

Under the FBA framework, we assumed that the metabolism is in a steady state. 
Hence, there is no accumulation of mass, which means no change of metabolite con-
centration over time. Sr is the stoichiometric matrix of the metabolic network, vr,c 
represents the predicted flux for reaction r ( r is any reaction in the network) in condi-
tion c in the metabolic network. The variable vr,c must satisfy the constraints from the 
stoichiometry, as well as lower lbr and upper bounds ubr , i.e.,

Subject to constraints (1) to (3), we formulated the optimization problem by

The formulated objective function is a trade-off between two optimization criteria. 
The first term, 

∑

ri,c

wri ·

∣

∣

∣
vri,c − v

fit
ri,c

∣

∣

∣
 , minimizes an error between the predicted flux vri,c 

and the gene expression-based flux vfitri,c . The weight wri is introduced to adjust the 
term through equation (5). The predicted flux vri,c was adjusted by averaging the gene 
expression values using the weight wri for each gene encoding the reaction ri.Vweight

ri  
was obtained by selecting the maximum of absolute values of the maximum or mini-
mum flux from the FVA derived maximal flux values. The weight was set as the recip-
rocal of this value to make reactions with small and high variances of fluxes equally 
important to the objective function. The associated reactions were down-weighted by 
adding the constant +100 in the denominator. Moreover, we discarded reactions for 
which Vmin

ri  and Vmax
ri  were zero. This resulted in lower numbers of reactions leading 

to 98 reactions basing on 116 genes (Additional file 1: Table S3).
The second term in formula (4), α

∑

ro,c
vro,c , aims to minimize a sum of all predicted 

fluxes vro,c from reactions being not CR nor AR coping for the problem of obtaining 
thermodynamically infeasible loops. To obtain an appropriate α value, the sum of 
sums of absolute values of fluxes vro,c across all conditions, 

c
∑

i=1

∑

ro,c

∣

∣vro,c
∣

∣ , and a total 

model mapping discrepancy were assessed for each α variation (Additional file 1: Fig-
ure S3). The total model mapping discrepancy d is a coefficient used to measure an 
overall deviated distance between vri,c and vfitri,c from all reactions ri across all condi-
tions. It reflects how good vri,c resembles vfitri,c and was derived by

(2)Sr · vr,c = 0

(3)lbr ≤ vr,c ≤ ubr

(4)Minimize
∑

ri,c

wri ·

∣

∣

∣
vri,c − v

fit
ri,c

∣

∣

∣
+ α

∑

ro,c

vro,c

(5)wri =







1

V
weight
ri

, ∀ri ∈ CR

1

V
weight
ri +100

, ∀ri ∈ AR

(6)d =

c
∑

i=1

∑

ri,c

∣

∣

∣
vri,c − v

fit
ri,c

∣

∣

∣
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After comparing the sum of sums of absolute values of fluxes vro,c and the total 
model mapping discrepancy from different α values, the value of 0.01 was set and 
selected since the sum of sums of absolute values of fluxes vro,c was considerably 
reduced while the total model mapping discrepancy was only moderately increased 
(Additional file 1: Figure S3).

A biomass constraint obtained from the growth rate was set for each condition c based 
on the data from Chubukov et al. and Buescher et al. [13, 14]. The biomass constraint 
was implemented as a lower limit by

where cTbiomass,c is the transpose of the biomass reaction coefficient, vbiomass,c is the pre-
dicted flux for the biomass reaction in condition c , and Bc is the scalar product from the 
biomass production for condition c , as given by Chubokov et al. and Buescher et al. In 
our implementation, we opened the lower bounds for all eight carbon source exchange 
reactions to allow influxes of any possible carbon source during learning of the model 
based on the corresponding gene expression profiles. We took the maximum substrate 
rate (negative lower bounds) reported in Chubukov et al. [14] across all conditions for 
each carbon source. We set these lower bounds of all eight carbon source transporter 
reactions to the minimum values for all conditions. This setting made sure to predict 
carbon sources without prior knowledge of the carbon source in the certain carbon 
source condition.

Reducing the search space employing Iterative Feasible Flux Space Reduction (IFFPR)

To correctly map the expression data to the metabolic flux, we needed a realistic esti-
mate of the lower and upper bounds for the reactions in the model. At different steady-
state conditions, the feasible minimum and maximum flux within the solution space 
can differ from the initially set lower and upper bounds of each reaction. FVA is a well-
known technique to determine flux ranges [51]. We applied FVA to determine the min-
imum and maximum possible fluxes as follows. For each reaction r in condition c , in 
FVA, it is assumed that the metabolic network is in a steady state and the stoichiometry 
is fulfilled, as referred to equations (2) and (3). FVA minimizes and maximizes the flux 
vr,c to find an upper and lower bound for the respective reaction satisfying the FBA con-
straints (formula (2) and (3)).

In general, doing this for every reaction should narrow down the flux range of each 
reaction. However, we observed that the boundaries did not differ substantially after 
performing FVA for every core and associated reaction. To further reduce the solution 
space and limit its flexibility, we developed an iterative approach. The approach was 
part of the training scheme to narrow down the flux ranges; hence, we applied this only 
to the training data. The method was termed Iterative Feasible Flux Space Reduction 
(IFFPR). A figure of the workflow is given in the Additional file 1: Figure S4. IFFPR works 
as follows:

a.	 Vmax
ri  and Vmin

ri  are acquired by the above-described FVA for each reaction.

(7)cTbiomass,cvbiomass,c ≥ Bc
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b.	 Absolute values of Vmax
ri  and Vmin

ri
 from each reaction are compared and the max-

imum of these values used as the representative maximal bound for this reaction. 
Representative maximal bounds from all reactions are used to rank the reactions. 
The reaction with the highest value is placed at the top position (i = 1).

c.	 The first reaction ri , with i = 1 is selected.
d.	Vmax

ri,P  = Vmax
ri  and Vmin

ri,P  = Vmin
ri  is set.

e.	

in which Vmax
ri,C  is the new maximal possible flux for the current iteration C , Vmin

ri,C  is 
the new minimal possible flux for the current iteration C . P is used to indicate the 
previous iteration. Vmax

ri,P  and Vmin
ri,P  are reduced by half every iteration. Since the reac-

tion can be unidirectional or bi-directional, Vmax
ri,P  and Vmin

ri,P  can have similar or dif-
ferent signs. Equations (8) and (9) are applied to reduce Vmax

ri,P  and Vmin
ri,P  . If  Vmax

ri,P  and 
Vmin
ri,P  have the same sign, either equation (8) or (9) is used depending on the sign 

aiming to reduce the flux range.
f.	 Vmax

ri,C  and Vmin
ri,C  are applied as Vmax

ri  and Vmin
ri  in formula (1) mapping gene expression 

values to flux.
g.	 After optimizing the objective function in formula (4), the total model mapping dis-

crepancies are compared between the previous and the new iteration. If the total 
model mapping discrepancy from the previous run is greater, the algorithm proceeds 
with the next iteration and proceeds with step e).

h.	 The inner iterative process terminates for reaction i. The next reaction in the list is 
selected by setting i = i+1, and the algorithm proceeds with step d).

i.	The algorithm terminates if the total model mapping discrepancy becomes stable, or 
all reactions are processed.

We terminated the process before the algorithm reached the end of the list. As the 
algorithm processed around 80% of the reactions in the list, the total model mapping 
discrepancy became stable (Fig. 2). This was explainable as the rest of the reactions (~ 
20%) already showed narrow flux ranges (Additional file 1: Table S4). Reducing the flux 
ranges for these reactions could not influence the total model mapping discrepancy 
any further but only cost more computational time (Fig. 2). Hence, the algorithm was 
stopped, and the sets of Vmax

ri,C  and Vmin
ri,C  were obtained.

Reducing the number of thermodynamically infeasible loops

In constraint-based modeling, the thermodynamic loop law can get violated. The loop 
law is similar to Kirchhoff’s second law for electrical circuits [29]. It states that at steady 
state there must not be any closed cycle or loop in the metabolic network with a non-
zero net flux. Such loops would disregard the second law of thermodynamics and are 
hence thermodynamically infeasible. The problem of avoiding thermodynamically 

(8)Vmax
ri,C = 0.5 ∗ Vmax

ri,P

(9)Vmin
ri,C = 0.5 ∗ Vmin

ri,P
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infeasible loops (TIL) can be solved by imposing thermodynamic constraints such as 
standard-state free energy of reaction into the optimization. However, it is very chal-
lenging to acquire this information for the whole metabolic network as well as to imple-
ment it in optimization-based computations [30].

To solve this problem within the FBA framework, Schellenberger et al. [30] intro-
duced a method called loopless-COBRA (ll-COBRA). Il-COBRA removes TIL from 
the network by integrating thermodynamic constraints obtained from flux direction-
ality which readily exists inside every metabolic network with FBA. Although the 
problem becomes less complex, it is still computationally intensive. In order to speed 
up the process to remove TIL, we developed a novel iterative procedure to detect and 
remove TILs called REDucing the number of Thermodynamically Infeasible Loops 
(RED-TIL). After obtaining flux prediction results from the mapping procedure (see 
Materials and methods, Formulating the optimization criterion), the results were 
used as an input for a MILP problem to identify TILs and exclude them.

External reactions are not regarded. Applying a maximal flux value threshold 
(threshold = 0.01) for TIL to be allowed, the set of reactions supp(v) known as the 
support of v is assembled. supp(v) contains a subset of the internal reactions ( v ≥ 
0.01). We applied the value of 0.01 as a trade-off between CPU time and reasonable 
results. Next, an optimization problem is put up to determine the length of a mini-
mum-containing TIL in the solution by

subject to

where �r is the flux of reaction r ( ∀r ∈ supp(v) ), Sr is a stoichiometric matrix of the met-
abolic network with metabolites and reactions, inFCr is a binary variable which equals 
to 1 for a reaction that is involved in the potential TIL. In a system that contains a TIL, 
there must be at least two reactions involved enforced by equation (13). If a solution of 
the problem put up by equations (10)–(14) is found, a TIL (of length k) is detected. A 
constraint is added not allowing this TIL by

(10)Minimize
∑

r

�r

(11)
∑

r

Sr · �r = 0

(12)�r ≥ inFCr

(13)
∑

r

inFCr ≥ 2

(14)inFCr ∈ {0, 1}

(15)
k

∑

i=1

inFCri ≤ k − 1
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Equation (15) forces the algorithm to search for a solution that puts at least one of 
these variables inFCr1 , inFCr2 , . . . , inFCrk to 0 which leads to the TIL to be discarded 
from the solution. In the next optimization iteration, the mapping procedure is re-
optimized using equations (1) to (5) together with the newly added constraint from 
equation (15), followed by finding new TIL employing the MIP problem described 
by equations (10)–(14). The algorithm stops when no TIL above the threshold can be 
found.

Fig. 1  The workflow.
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Workflow for validating the model

The overview of the entire process is illustrated in Fig.  1. We started by learning the 
model based on gene expression data as explained above, obtaining the best parame-
ter setting. Then, we predicted the primary carbon source for each of the eight carbon 
source conditions by selecting the transporter (one out of eight potential transporters) 
with the highest flux in the corresponding condition. The prediction was validated by 
comparing it to the known carbon source of the according condition. Besides, we com-
pared the flux predictions of the 40 core reactions with the flux of the original publi-
cation [14] derived by 13C tracer analysis and quantified the similarity by Pearson’s 
correlation and normalized error as described in the publication of Machado and Her-
rgard [52]. Furthermore, the model was applied to an unknown dataset, i.e., the data 
from the time series on spiked glucose on malate and spiked malate on glucose medium 
as described above.

Implementation of the benchmarking methods

To benchmark LPM-GEM, we compared its prediction performance with three well-
established methods, i.e., pFBA [49], iMAT [31, 33], and mCADRE [23]. For the imple-
mentation of pFBA, we followed the tutorial provided by the Cobra toolbox [23]. The 
same metabolic model used by LPM-GEM was used, and minimal lower bounds for all 
eight carbon source exchange reactions and biomass production information were taken 
from Chubukov et al. [14] to get flux predictions from the method. As iMAT is imple-
mented inside the Cobra toolbox [23], we followed a tutorial from the iMAT protocol 
[31, 33] to ensure the correct implementation of the method. We employed the same 
metabolic model, the same gene expression data for the eight different carbon source 
conditions [40], and GPR mapping as in LPM-GEM. In line, the minimal lower bounds 
for all eight carbon source exchange reactions were taken from Chubukov et  al. [14]. 
We set upper (a cutoff for non-zero flux reactions) and lower thresholds (a cutoff for 
zero flux reactions) equal to +/− 0.3 SD from gene expression values following the sug-
gested iMAT discretization process [31, 33, 53]. To implement mCADRE, we followed 
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Fig. 2  The total model mapping discrepancy calculated over all eight conditions (at α = 0.01, the penalty 
parameter  α is described below) is shown with respect to the number of iterations of the search space 
reduction algorithm (IFFPR). As the algorithm proceeds to the end of the list of reactions (> 600 iterations), 
the total model mapping discrepancy does not further decrease.
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a tutorial provided by a publication of mCADRE [32]. As for LPM-GEM and iMAT, we 
employed the same metabolic model, gene expression data for the eight different carbon 
source conditions [40], and GPR mapping. Minimal lower bounds for all eight carbon 
source exchange reactions were again taken from Chubukov et al. [14]. In order to bina-
rize gene expression data and calculate ubiquity scores for mCADRE, the gene expres-
sion data was binarized by considering transcripts with expression values less than the 
75th percentile of expression values in the matrix as zero and as one otherwise [32, 54]. 
Also, other thresholds were tested but led to worse results (Additional File 1: Table S5). 
Then, ubiquity scores for genes were determined by calculating the number of samples 
with expressed genes divided by the total number of samples for each specific gene, as 
described in the original publication of mCADRE [32, 54].

Implementation and statistics

All analyses were performed using R version 3.3.3 (www.r-​proje​ct.​org). The Cobra tool-
box version 3.0 and Matlab version R2019a (www.​mathw​orks.​com) were used to obtain 
the initial stoichiometric matrix, lower and upper bounds, reversibility information, 
metabolite and reaction names from the initial metabolic network, and benchmarking 
flux predictions from iMAT, mCADRE and pFBA (see Results). All further analysis was 
performed using R. The Gurobi optimizer version 9.0.2 (www.​gurobi.​com) was used to 
solve mixed-integer linear programming problems. For assessing the carbon sources, 
z-scores were calculated for each transporter of the eight (eight-carbon-source study) 
or two (nutritional-shift study) different carbon sources across all conditions as a means 
to compare the results of the predictions across all the corresponding transporters. This 
enabled us to compare also transporters with lower differences in their fluxes among the 
different conditions to transporters with higher differences.

Results
Reducing the search space following three strategies improves flux predictions

Thermodynamically infeasible loops are problematic for constraint-based modeling 
leading to incorrect flux distributions [29, 30, 55]. Obtaining a realistic context-specific 
model was a main goal when integrating transcription profiles for building the meta-
bolic model. To base our analyses on solutions that are thermodynamically feasible, we 
reduced TILs following three strategies, i.e.,

1.	 Reducing the search space employing Iterative Feasible Flux Space Reduction 
(IFFPR),

2.	 Applying our method RED-TIL, and
3.	 Penalizing high flux contributions of non-core and non-associated reactions.

All strategies improved our models as described in the following (the improvement by 
strategy (3) is described in a lower section (see Adding a penalty for the sum of fluxes led 
to improved predictions).

http://www.r-project.org
http://www.mathworks.com
http://www.gurobi.com
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Improving the model by iterative feasible flux space reduction (IFFPR)

For all fitted reactions (core and associated reactions) of the model, we performed flux 
variability analysis (FVA) to reduce the maximal and minimal flux boundaries. However, 
we observed that for many reactions, the resulting flux ranges did not substantially dif-
fer from the original upper and lower bounds. These high flux ranges were expected not 
to reflect realistic situations and may facilitate using TILs by the optimization proce-
dure when fitting the model to the transcription profiles. Hence, we developed a new 
method to iteratively reduce the flux boundaries from FVA by comparing the discrep-
ancy between the fluxes derived from the expression values and the optimal feasible flux 
when obtaining newly adjusted maximal ( Vmax

ri  ) and minimal ( Vmin
ri  ) possible fluxes for 

every fitted reaction. In the following, this discrepancy is denoted as the “total model 
mapping discrepancy”. This led to new, considerably reduced bounds (Additional file 1: 
Table  S4). Notably, the total model mapping discrepancy decreased considerably by 
95.65% from the original discrepancy (Figure 2). All flux predictions with and without 
employing IFFPR are listed in Additional file 1: Tables S6 and S7.

In summary, reducing the search space improved integrating the experimental data 
more efficiently observed by a decreased total model mapping discrepancy.

Reducing thermodynamically infeasible loops within the FBA model

ll-COBRA is a well-established and efficient method to remove TIL in constraint-based 
modeling efficiently. ll-COBRA generates one large MILP problem finding an optimal 
solution while enforcing fluxes from internal reactions participating in all detected 
cycles to be zero [30]. The method is very powerful but computationally demanding. 
Hence, we developed a novel method (RED-TIL) based on MILP iteratively removing 
TIL to solve the same problem. Our iterative approach required considerably less run-
ning time. RED-TIL solves an FBA problem, identifies and removes iteratively from bot-
tom-up TIL in the solution space. The process is repeated until no TIL above a certain 
threshold (threshold = 0.01) is detected. To compare these approaches, we implemented 
both methods using the same R programming environment and the same numerical 
solver, yielding very similar solutions (Pearson’s correlation coefficient r = 0.96, Addi-
tional file 1: Figure S5 and Table S8). Even though we yielded similar results, we observed 
different running times. Explicitly, when we performed FVA for every reaction in the 
network (1250 reactions equal to 2500 iterations per condition), RED-TIL needed 12.89 
hours for all eight conditions while ll-COBRA required 42.83 hours (Additional file 1: 
Figure S6 shows running times for each carbon source).

In summary, for removing thermodynamically infeasible loops, our new approach 
RED-TIL led to similar models in much faster running time when compared to a well-
established, commonly used method.

LPM‑GEM identifies the correct carbon sources

We mapped gene expression levels onto the reactions by a regression approach (see 
Materials and Methods) and generated context-specific metabolic models employing 
RED-TIL and IFFPR. This was done across each of the eight carbon sources (glucose, 
fructose, gluconate, glutamate, succinate, glycerol, malate, pyruvate). Besides the core 
reactions, for which 13C metabolic flux data was available, we considered “associated 
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reactions” for optimally fitting the optimal solution to the transcription profiles of the 
corresponding coding genes. The “associated reactions” were neighbors of the core reac-
tions and were assumed to be important for the carbon source prediction (see Mate-
rials and Methods, Defining the set of reactions for the optimization criterion). After 
optimization, we assessed our prediction results of the eight transporter reactions (glu-
cose, fructose, gluconate, glutamate, succinate, glycerol, malate, pyruvate) to identify the 
major carbon source for each condition. For this, we compared the z-scores of the cor-
responding carbon source transporters in each condition to predict the primary (highest 

a

b

Fig. 3  a In each panel, the bars show the z-scores of the predictions of the carbon source transporters are 
shown (of the eight-carbon-sources study). The headers of the panels indicate the true carbon source of the 
respective condition; b Prediction of the carbon source for the nutritional shift. GM: glucose to glucose plus 
malate, 90 min after adding malate; MG: malate to malate plus glucose, 90 min after adding glucose. For (a) 
and (b), a higher z-score indicates a higher probability for a specific carbon source.
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z-score) and secondary (second highest z-score) carbon sources (Fig.  3a, Additional 
file 1: Figure S7a). For carbon source conditions with only one carbon source, all predic-
tions were correct (n = 6, glucose, fructose, gluconate, glycerol, malate, pyruvate). For 
the two carbon sources, which consisted of two carbon sources (glutamate/succinate, 
malate/glucose), the primary carbon source was also correctly predicted. The secondary 
carbon source (succinate) was predicted correctly for the carbon sources glutamate and 
succinate. However, for the carbon sources malate and glucose, pyruvate was predicted 
as a second carbon source instead of glucose. Notably, the z-score of the glucose trans-
porter was only slightly below the z-score of the pyruvate transporter (Fig. 3a).

Overall, our method could well predict the carbon sources based on gene expression 
profiles of the respective conditions.

Adding a penalty for the sum of fluxes led to improved predictions

In addition to optimizing the fitting of gene expression to the fluxes of the reactions, we 
also considered minimizing the sum of all predicted fluxes from reactions which were 
either core reactions or associated reactions to restrict the optimizer employing thermo-
dynamically infeasible loops (see Materials and Methods, Formulating the optimization 
criterion). We tested different strengths of the penalty (ranging from α = 0 (no penalty) 
to α = 10 (high penalty)) gauging between low total model mapping discrepancy and a 
low total sum of fluxes vro,c across all conditions before applying IFFPR and RED-TIL 
(Additional file 1: Figure S3). We selected α = 0.01 serving as a suitable trade-off param-
eter preventing high fluxes as we observed a considerable great decrease from the total 
sum of fluxes (compared to α = 0) while leaving the total model mapping discrepancy 
moderate.

LPM‑GEM outperforms existing methods

For benchmarking, we compared our method with three other well-known methods 
(iMAT [31, 33], mCADRE [32], and pFBA [49]). We constructed the metabolic models 
using the same metabolic network of B. subtilis, the same gene expression profiles from 
the eight carbon source conditions (glucose, fructose, gluconate, glutamate/succinate, 
glycerol, malate, malate/glucose, pyruvate), and we selected the same core reactions for 
iMAT and mCADRE. For pFBA, no gene expression data was used as the method does 
not require them. We followed the standard protocols from these three methods (see 
Materials and Methods) and compared their flux predictions to the gold standard (13C 
tracer derived fluxes), i.e., to all 40 reactions [14] for which 13C data was available.

Among all four approaches, only pFBA failed to give flux predictions according to the 
different biomass constraints from each condition. We got the same models across all 
eight conditions in this setting. The method could only distinguish different flux pro-
files when we restricted the specific one or two carbon sources corresponding to each 
specific condition to enter the system. Even though this was not the principal aim of our 
study (our principal aim was to predict the carbon sources and not the metabolic fluxes 
based on the prior knowledge of the carbon sources), we assessed the flux prediction 
performance based on biomass and the known carbon sources. We calculated Pearson’s 
correlation coefficients (r) and normalized errors [52] between pFBA predictions and 
the gold standard for these 40 reactions. The average Pearson’s correlation coefficient 
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is 0.68 (SD = 0.32), and the normalized error is 0.90. Table S9 in Additional file 1 lists 
the predicted fluxes. Pearson’s correlation coefficients from these 40 reactions are pro-
vided in Table  S10. We also compared the carbon source predictions assessed by the 
fluxes from the corresponding transporters. pFBA identified all six single carbon sources 
correctly, but the approach could only predict one out of two from two-carbon sources 
(Additional file 1: Figures S8–S9). Although pFBA performed well in the new setting, it 
did not suit the purpose of this study aiming to predict the carbon sources without prior 
knowledge of the used carbon sources. Hence, the method could not be compared with 
the other methods and was excluded from further comparisons.

We then compared the flux predictions of LPM-GEM with iMAT, and mCADRE. 
The scatterplot of the predicted fluxes of all three methods (iMAT, LPM-GEM, and 
mCADRE) versus the measured fluxes (13C metabolic fluxes) is provided in Additional 
file 1: Figure S10. All available flux predictions are listed in Additional file 1: Table S7 and 
Tables S11- S12. To assess the flux prediction performance from all methods, we also 
calculated Pearson’s correlation coefficients and normalized errors [52] between predic-
tions and the gold standard for these reactions as we did previously. On average, our 
method outperformed iMAT and mCADRE (averaged Pearson’s correlation coefficient, 
LPM-GEM: r = 0.55 (SD = 0.31), iMAT: r = 0.22 (SD = 0.44), mCADRE: r = 0.04 (SD = 
0.39)). Pearson’s correlation coefficients for these reactions between the predictions and 
the gold standard are shown for LPM-GEM, iMAT, and mCADRE in Fig. 4 (and listed 
in Additional file 1: Tables S13-S15). For normalized errors, LPM-GEM also showed a 
lower normalized error than iMAT and mCADRE (averaged normalized error, LPM-
GEM: 1.46, iMAT: 49.09, and mCADRE: 68.04). The normalized errors from eight dif-
ferent conditions are shown in Fig. 5. Next, we compared the carbon source predictions 
assessed by the fluxes from the corresponding transporters. iMAT predicted correctly 
only three out of six single carbon sources (us: all six out of six), and correctly all two-
carbon sources (two out of two, us: one correct, for the other, only the primary source 
was correctly predicted) (details, see Additional file  1: Figures  S11-S12). While iMAT 
gave several correct transporter reaction predictions, mCADRE did not provide any cor-
rect carbon source prediction. In summary, our method led to better flux predictions 
when compared to iMAT, mCADRE, and pFBA.

LPM‑GEM identifies the carbon sources of the validation set but shows limitations 

when predicting time‑lapse fluxes

So far, we showed how we trained and tested our model utilizing gene expression data to 
predict carbon sources for B. subtilis in eight different steady-state conditions. However, 
in a natural environment, the bacteria may need to switch from one carbon source to 
another. Particularly, glucose and malate are preferred carbon sources for which such a 
switch may occur [56, 57]. We applied our approach to a publicly available time-series 
dataset consisting of two nutritional shifts, i.e., from glucose to glucose plus malate and 
from malate to malate plus glucose. In these shifts, B. subtilis was grown on a single 
substrate leading to a steady-state-like initial condition. Then, the other substrate was 
added. Transcription profiles and 13C flux data were generated in a time series until the 
shift was performed (at an endpoint at 90 min) according to the authors of the original 
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study [13]. We applied the model which had been trained on the first dataset. We inves-
tigated the predictions of the two major carbon sources for the two initial conditions 
(before adding the other carbon source—only glucose and only malate at steady state) 
and for the two endpoint conditions (90 min after adding malate to glucose (glucose to 
glucose plus malate), and 90 min after adding glucose to malate (malate to malate plus 
glucose)). For this, as for the study with the eight carbon sources (described above), we 
computed the z-scores of the transporters across these steady-state conditions and com-
pared our predicted results with the gold standard. All four out of four steady-state con-
ditions were predicted correctly (Fig. 3b, Additional file 1: Figure S7b).
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Fig. 4  Prediction performance of our approach (LPM-GEM), iMAT, and mCADRE. For all 40 core reactions 
for which gold standard data (from 13C tracer analysis) was available, the Pearson’s correlation coefficients 
between the predicted fluxes and the fluxes from the gold standard are shown (grey: fluxes are predicted to 
be zero in every condition); PPP: pentose phosphate pathway, TCA: tricarboxylic acid.
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Next, we investigated how our model predicted the time-series of the shifts and 
again compared the predicted fluxes of the malate and glucose transporters with the 
fluxes from the gold standard across all time points (Additional file 1: Figure S13 and 
Table  S16). When the carbon source was shifted from malate to malate plus glucose, 
our predicted fluxes from glucose and malate transporters correlated quite well with 
the gold standard (r = 0.68 for the glucose transporter, r = 0.48 for the malate trans-
porter). We also expected good prediction results for the shift from glucose to glucose 
plus malate, as although the order was changed, the conditions were based on the same 
carbon sources. While the prediction for the malate transporter was very good (r = 0.98 
for the shift of glucose to glucose plus malate), the prediction for the glucose transporter 
was very poor, i.e., the flux prediction was even negatively correlated to the gold stand-
ard (r = −0.21). We explain this discrepancy in Discussion. The flux predictions from 
both shifts are provided in Additional file 1: Tables S17 and S18.

In summary, applying the model trained with the data from the first study (eight car-
bon sources) to the unknown data from the validation set (glucose/malate carbon source 
shift), the model correctly identified the carbon sources at baseline and at the endpoints 
of the carbon source shifts. For the prediction of the time lapse, the model predicted 
the time-lapse behavior of the main nutrients for the shift from malate to malate plus 
glucose correctly. However, the model had major difficulties for the shift from glucose to 
glucose plus malate, and this will be discussed below.

Discussion
We established a novel method employing gene expression profiles to estimate meta-
bolic fluxes in a systems view. During implementing the method, we observed that the 
optimization to fit the fluxes to expression profiles utilized thermodynamically infeasible 
loops (TILs), leading to low prediction performances. We addressed this issue following 
three different strategies. First, we came up with a novel approach (IFFPR) for reducing 

Fig. 5  Comparison of normalized errors from different methods. Normalized errors of LPM-GEM, iMAT, and 
mCADRE from eight different conditions are shown in the square root scale (the normalized error is the 
Euclidean distance between 13C metabolic flux values and predicted flux values of the specific condition 
divided by the magnitude of 13C metabolic flux values of the same condition [52])



Page 19 of 23Thanamit et al. BMC Bioinformatics          (2022) 23:226 	

the upper and lower bounds by iteratively reducing the flux ranges of each considered 
reaction. Furthermore, we recognized that using an existing well-established method to 
reduce TIL (ll-COBRA) was very powerful, but it was quite CPU intensive for our pur-
poses. We addressed this issue and introduced our new method RED-TIL as an alter-
native method. ll-COBRA formulates one large problem and searches for an optimal 
solution in a predefined-thermodynamic feasible region. In turn, employing a bottom-
up design, RED-TIL splits the overall problem into smaller problems by detecting a TIL 
in the optimal solution, excluding it from the solution space, and re-optimizing the solu-
tion iteratively until no TIL (within a certain limit) is detected. While the results were 
comparable, the computational speed for RED-TIL was considerably faster. On aver-
age, RED-TIL removed TIL from the relevant solution space three times faster than ll-
COBRA. Such a speed-up was relevant for our study as we needed to generate solutions 
for a larger range of different parameter settings, particularly for optimizing the upper 
and lower bounds for each reaction when running IFFPR. As a third means to reduce 
TIL, we penalized the sum of fluxes of non-core reactions. All three methods to reduce 
TIL improved our predictions. Using these methods, we set up an FBA model based on 
a linear fit between the expression of the encoding genes for an enzyme and its predicted 
flux. We aimed to predict the main carbon source for the model organism B. subtilis. We 
identified the correct major carbon sources for all eight conditions based on the corre-
sponding gene expression profiles. LPM-GEM was developed to be used as a compara-
tive method to identify the major carbon sources and was tested here for single or two 
carbon sources. In a typical application, LPM-GEM may be also applied to investiga-
tions in rich media conditions. As a future aspect, the performance of LPM-GEM may 
be tested with data from different rich media conditions by e.g. comparing the predic-
tions with the consumption rates of the cells from the supernatant. Moreover, for most 
reactions in substrate uptakes, glycolysis, and TCA cycle, the flux prediction results cor-
related well with 13C metabolic flux data. We could very well model the major intracel-
lular changes in carbon metabolism when the carbon sources changed, and particularly 
the direction of fluxes and the switch between glycolysis (using NAD-dependent GapA) 
and gluconeogenesis (using NADP-dependent GapB).

We benchmarked our method with the well-known methods (iMAT, mCADRE, and 
pFBA). Without prior knowledge of carbon sources, pFBA failed to distinguish flux pro-
files. The method only showed a good flux prediction performance when carbon sources 
were known. It was then excluded from further comparisons as it did not suit the prin-
cipal aim of the study (i.e., the prediction of carbon sources). Compared to iMAT and 
mCADRE, our method yielded better flux predictions and, on average, better predictions 
of the carbon source. A reason for this may be that our method requires no binarization/
discretization of the transcription profiles. iMAT, mCADRE, and other approaches [27, 
28, 31–33] need expression level thresholds to decide whether a reaction needs to be 
active (constrained or part of the optimization to have a non-zero flux) or not. In turn, 
our method makes use of the continuous nature of gene expression based on a linear 
regression model to fit the metabolic fluxes.

Using the model trained with the dataset of the eight carbon sources, we validated 
our approach with a second publicly available dataset in which a shift in the carbon 
source from glucose to glucose plus malate and from malate to malate plus glucose was 
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investigated [13]. Our model correctly predicted the carbon sources of the initial setting 
and the endpoints. Also, the model predictions of the shift from malate to malate plus 
glucose correlated well with the gold standard (13C tracer derived flux from the origi-
nal study). Although gene expression data is scalable and easy to obtain compared to 
13C metabolic flux data [34–36], it provides only indirect information for the estima-
tion of metabolic fluxes. For some conditions or settings, the metabolic flux may not be 
controlled by transcription of the corresponding enzyme coding genes. Other flux con-
trol mechanisms, e.g., related to limitations due to substrate or product concentrations, 
translational regulation, covalent modification of the enzymes, or allosteric regulation, 
can influence the metabolic flux [58]. We observed this limitation in the nutrient shift 
from glucose to glucose plus malate. Here, we observed very poor prediction results sug-
gesting that this shift might not be controlled by transcriptional regulation. The result 
from our model is in line with the observations reported in the original study by Bue-
scher et al. [13]. They assumed that these shifts are mediated by fundamentally different 
control mechanisms. In order to confirm their assumption, Buescher et al. performed a 
multi-omics analysis of time-lapse profiles from promoter activity, mRNA, and protein 
abundance to identify post-transcriptional events [13]. After correlating the gene expres-
sion levels with the protein levels, they observed high positive correlations in gene-pro-
tein pairs related to glycolysis such as phosphoglycerate mutase (r = 0.96), PTS glucose 
transporter (r = 0.88), and glyceraldehyde 3-phosphate dehydrogenase (r = 0.96) for the 
shift from malate to malate plus glucose. However, they could not find correlations in 
gene-protein pairs related to glycolysis in the glucose to glucose plus malate shift. From 
this, they concluded that the shift from glucose to glucose plus malate was dominantly 
controlled by post-transcriptional mechanisms (in contrast to the malate to malate plus 
glucose shift), or proteins for glycolysis are constitutively expressed. The latter is rea-
sonable. As the benefit of glucose consumption is very high compared to malate, it may 
be beneficial to keep proteins for glycolysis constitutively expressed under the malate 
condition. This observation serves as a good example of a limitation of our approach. 
The method relies on gene expression profiles to predict metabolic fluxes. Hence, it 
requires a basic understanding of the investigated biology beforehand to avoid study-
ing mechanisms that are likely to depend on other regulation mechanisms than tran-
scriptional regulation. The core reactions used in this study are well-known reactions in 
central energy metabolism and are commonly used as core reactions in metabolic mod-
elling studies. We mainly used core reactions for which 13C tracer derived flux data was 
available. In principle, our method enables using any set of enzymes as core reactions 
which are of particular interest. Still, also here, the selection needs a sufficient biological 
background knowledge to circumvent studying unrealistic scenarios which may be due 
to the fact that the enzymes under study are not regulated on the gene expression level 
or are not the relevant pacemakers in the studied conditions. Even though LPM-GEM 
showed a distinctive better flux prediction performance compared to other methods 
tested (iMAT, mCADRE, and pFBA), a limitation of our approach is that it needs more 
CPU runtime to build the models. For our set of core reactions, this was not limiting our 
analyses. However, future studies need to be performed to test if models basing on much 
larger sets of core reactions can also be built in reasonable time.
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Conclusions
We have introduced a novel computational approach integrating gene expression pro-
files into a metabolic network supported by new methods to reduce TIL. With this, we 
could well predict the carbon sources of B. subtilis. Our study supports the idea that 
FBA analysis based on gene expression profiles can serve as an alternative to 13C tracer 
analysis. Since our approach adjusts flux levels continuously to gene transcript levels, 
it circumvents defining thresholds and  discretization of the expression data. Still, one 
should be aware of the limitations when studying processes that are not regulated by 
gene transcription.
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